首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1818篇
  免费   107篇
  国内免费   277篇
化学   1541篇
晶体学   37篇
力学   55篇
综合类   4篇
数学   145篇
物理学   420篇
  2023年   11篇
  2022年   22篇
  2021年   23篇
  2020年   40篇
  2019年   34篇
  2018年   34篇
  2017年   27篇
  2016年   59篇
  2015年   62篇
  2014年   89篇
  2013年   151篇
  2012年   87篇
  2011年   149篇
  2010年   109篇
  2009年   176篇
  2008年   174篇
  2007年   159篇
  2006年   157篇
  2005年   101篇
  2004年   94篇
  2003年   52篇
  2002年   36篇
  2001年   31篇
  2000年   45篇
  1999年   38篇
  1998年   28篇
  1997年   19篇
  1996年   19篇
  1995年   16篇
  1994年   16篇
  1993年   11篇
  1992年   7篇
  1991年   13篇
  1990年   9篇
  1989年   15篇
  1988年   12篇
  1987年   10篇
  1986年   8篇
  1985年   4篇
  1984年   8篇
  1982年   12篇
  1981年   4篇
  1980年   9篇
  1979年   7篇
  1978年   5篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
  1969年   1篇
排序方式: 共有2202条查询结果,搜索用时 15 毫秒
51.
Natural rubber/styrene-butadiene rubber (NR/SBR) blends, with and without silica, were prepared by co-coagulating the mixture of rubber latices and various amounts of well-dispersed silica suspension. An attempt to predict blend compositions was made using Raman spectroscopy in association with differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). It was found that the intensity of each Raman characteristic peak was strongly dependent on the blend composition, but there was no significant evolution with the presence of silica. Also, TGA results revealed an improvement in thermal stability of NR/SBR blends with increasing both SBR and silica contents due to the dilution effect. Two distinct glass transition temperatures (Tg) were observed in DSC thermograms of all blends, and their Tg values were independent on both blend composition and silica content. This indicated a physical blend formation, which agreed well with no shifts in Raman peaks of the blends in comparison with those of the individual rubbers. Linear regression with R2 quality factor close to 0.99 was achieved when plotting intensity ratio at 1371/1302 cm?1 versus blend ratios. On the other hand, the peak height ratio and heat capacity ratio from TGA and DSC analysis, respectively, yielded quadratic equations as a function of blend ratios.  相似文献   
52.
以乙二醇为溶剂,氯化铁、氯化钴、氯化镍和醋酸铵为反应试剂,采用溶剂热法制备纳米NixCo1-xFe2O4(x=0、0.3、0.5、0.7、1)铁氧体空心微球,研究镍含量对铁氧体空心球的磁性与吸波性能的影响。借助X-射线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、振动样品磁强计(VSM)和网络分析仪对试样的物相组成、微观形貌和电磁特性进行表征。结果表明制备的镍钴铁氧体为尖晶石结构,且形貌为空心球,粒径在200 nm左右。当x=0时,镍钴铁氧体空心球饱和磁化强度最大为81.7 emu·g-1,反射损耗在1 658.8 MHz有最小值为-16.9 dB。  相似文献   
53.
Samples of silica gel dried at different temperatures, silica gel modified with 3-aminopropylsilyl (APS) and silica gel modified with APS and further with a ferrocenyl phosphine derivative were investigated by DRIFT, transmission FTIR and MicroRaman spectroscopy. The reaction between 3-aminopropyltrimethoxysilane (APTMS) and silica gel was mainly identified by the diminishing or vanishing intensity of the stretching band of the free OH groups in the silica gel. Further chemical reaction of the APS groups with a ferrocenyl phosphine derivative (suitable as ligand in homogeneous catalysis) was identified in the IR spectra by the appearance of the CN stretching band of the formed Schiff base, and diminishing intensity of the δ(NH2) modes. According to the IR spectra the reaction of the ferrocenyl phosphine derivative with the APS-modified silica gel is almost quantitative. From the recorded IR and Raman spectra, conclusions concerning the substitution of APTMS methoxy groups during the chemisorption on silica gel were derived. Through deconvolution of the complex Raman band in the siloxy stretching region of the APS-modified silica gel, the newly formed siloxy bond was identified.  相似文献   
54.
利用改进型的溶胶-凝胶法, 制得了由锐钛矿相纳米颗粒组成的TiO2多孔微纳小球。通过调节前驱物浓度, 合成出粒径可控的尺寸分别为100, 175, 225, 475 nm的TiO2微纳小球, 并通过电泳沉积法将合成出的小球作为光散射层引入到染料敏化太阳电池(DSSC)中。由于这种微纳小球在具备良好的光散射性能的同时也具备较高的染料吸附量, 因此相较于基于纳米颗粒的单层结构的DSSC拥有更高的光电转换效率。通过比较分析, 粒径尺寸为475 nm的微球作为光散射层的DSSC光电转换效率可以达到6.3%, 较之于基于纳米颗粒的DSSC提高了30%。  相似文献   
55.
以空心球状TiO2为基体、以片状TiO2为骨架,采用刮刀法制备了染料敏化太阳能电池的多孔TiO2光阳极薄膜。光电转化效率测试结果表明,当作为骨架支撑材料的片状TiO2含量为20wt%时,光阳极薄膜组装成太阳能电池的光电转化效率达到最高值4.53%,比商业P25制备的无孔无骨架TiO2薄膜电池(4.06%)及无骨架结构的多孔TiO2薄膜电池(4.17%)的性能均有显著提高。当片状TiO2的最佳含量为20wt%电池薄膜厚度为33 μm时,太阳能电池光电转化效率进一步提升为7.06%。光电性能增强的原因是骨架结构有利于快速传输电子并增大染料吸附量。本研究通过设计制备具有骨架结构的多孔TiO2薄膜为提高染料敏化太阳能电池性能提供了新的思路。  相似文献   
56.
An innovative application of the solvent evaporation technique was suggested. Solvent evaporation technique is a technique for drug encapsulation and nanosphere preparation. The widely used technique is also facing the problem of low actual drug entrapment percent, which is not economic from the industrial view. The goal of this work is trying to use the advantage of this technique concerning the product sphericity and the ability to control particle size, to prepare a drug as pure crystals spheres. Ibuprofen is selected as a model drug. The spheres are formed by using Polyvinyl pyrrolidone (PVP) or Polyethylene glycol (PEG) as an anti-aggregating agent but not formed on using tween or span. Particle size and actual drug content depend on the concentrations the anti-aggregating agent used. Surfaces of the drug crystal spheres are porous with empty sphere internal structure on using PVP but spongy and rough on using PEG. The drug has its identity chemical form in the drug crystal spheres. IR scan of spheres prepared on using PEG showed a characteristic ether peak. DSC showed melting endothermic peak of PEG, but X-ray showed minor change in the drug crystal patterns. Drug release profiles from crystal spheres prepared with the same anti-aggregating agent are close to each other. The drug release profiles from drug crystal spheres prepared by using PEG are more controlled than that prepared by using PVP. The drug release mechanism is diffusion. It was concluded that, the same technique could be suggested for preparation of other biomedical material in pure crystals spheres with controlled particle size. These properties may encourage to prepare very small particles with spherical shape for inhalation or injection as an innovative particle technology application for the widely used technique.  相似文献   
57.
We first review the Coset Space Dimensional Reduction (CSDR) programme and present the best model constructed so far based on the , 10‐dimensional E8 gauge theory reduced over the nearly‐Kähler manifold with the additional use of the Wilson flux mechanism. Then we present the corresponding programme in the case that the extra dimensions are considered to be fuzzy coset spaces and the best model that has been constructed in this framework too. In both cases the best model appears to be the trinification GUT .  相似文献   
58.
In order to overcome the main obstacles for lithium–sulfur batteries, such as poor conductivity of sulfur, polysulfide intermediate dissolution, and large volume change generated during the cycle process, a hard‐template route is developed to synthesize large‐surface area carbon with abundant micropores and mesopores to immobilize sulfur species. The microstructures of the C/S hybrids are investigated using field emission scanning electron microscopy, transmission electron microscopy, X‐ray diffraction, Raman spectroscopy, X‐ray photoelectron spectroscopy, nitrogen adsorption–desorption isotherms, and electrochemical impedance spectroscopy techniques. The large surface and porous structure can effectively alleviate large strain due to the lithiation/delithiation process. More importantly, the micropores can effectively confine small molecules of sulfur in the form of S2–4, avoiding loss of active S species and dissolution of high‐order lithium polysulfides. The porous C/S hybrids show significantly enhanced electrochemical performance with good cycling stability, high specific capacity, and rate capability. The C/S‐39 hybrid with an optimal content of 39 wt% S shows a reversible capacity of 780 mA h g?1 after 100 cycles at the current density of 100 mA g?1. Even at a current density of 5 A g?1, the reversible capacity of C/S‐39 can still maintain at 420 mA h g?1 after 60 cycles. This strategy offers a new way for solving long‐term reversibility obstacle and designing new cathode electrode architectures.  相似文献   
59.
Polystyrene latex (PSL) nanoparticle (NP) sample is one of the most widely used standard materials. It is used for calibration of particle counters and particle size measurement tools. It has been reported that the measured NP sizes by various methods, such as Differential Mobility Analysis, dynamic light scattering (DLS), optical microscopy (OM), scanning electron microscopy (SEM) and atomic force microscopy (AFM), differ from each other. Deformation of PSL NPs on mica substrate has been reported in AFM measurements: the lateral width of PSL NPs is smaller than their vertical height. To provide a reliable calibration standard, the deformation must be measured by a method that can reliably visualize the entire three dimensional (3D) shape of the PSL NPs. Here we present a method for detailed measurement of PSL NP 3D shape by means of electron tomography in a transmission electron microscope. The observed shape of the PSL NPs with 100 nm and 50 nm diameter were not spherical, but squished in direction perpendicular to the support substrate by about 7.4% and 12.1%, respectively. The high difference in surface energy of the PSL NPs and that of substrate together with their low Young modulus appear to explain the squishing of the NPs without presence of water film.  相似文献   
60.
Lithium metal is recognized as one of the most promising anode materials owing to its ultrahigh theoretical specific capacity and low electrochemical potential. Nonetheless, dendritic Li growth has dramatically hindered the practical applications of Li metal anodes. Realizing spherical Li deposition is an effective approach to avoid Li dendrite growth, but the mechanism of spherical deposition is unknown. Herein, a diffusion‐reaction competition mechanism is proposed to reveal the rationale of different Li deposition morphologies. By controlling the rate‐determining step (diffusion or reaction) of Li deposition, various Li deposition scenarios are realized, in which the diffusion‐controlled process tends to lead to dendritic Li deposition while the reaction‐controlled process leads to spherical Li deposition. This study sheds fresh light on the dendrite‐free Li metal anode and guides to achieve safe batteries to benefit future wireless and fossil‐fuel‐free world.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号